Ch 7 MC Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Set up the definite integral that gives the area of the region bounded by the graph of $y_1 = x^2 + 2x + 1$ and ____ $y_2 = 2x + 5.$

a.
$$\int_{-2}^{2} (-x^{2}+4) dx$$

b.
$$\int_{-2}^{2} (x^{2}+2x+1) dx$$

c.
$$\int_{-2}^{2} (-x^{2}+4) dy$$

d.
$$\int_{-2}^{2} (x^{2}+4x+6) dy$$

e.
$$\int_{-2}^{2} (x^{2}+4x+6) dx$$

- 2. Find the area of the region bounded by the equations by integrating (i) with respect to x and (ii) with respect to y.
 - $x = 16 y^{2}$ x = y 4a. $A = \frac{727}{12}$ b. $A = \frac{365}{12}$ c. $A = \frac{243}{4}$ d. $A = \frac{243}{2}$ e. $A = \frac{365}{6}$
 - 3. Find the area of the region bounded by equations by integrating (i) with respect to x and (ii) with respect to y.
 - $y = x^{2}$ y = 72 - xa. $A = \frac{819}{4}$ b. $A = \frac{1637}{4}$ c. $A = \frac{819}{2}$ d. $A = \frac{4913}{12}$ e. $A = \frac{4913}{6}$

4. Find the area of the region bounded by the graphs of the algebraic functions.

$$f(x) = x^{2} + 30x + 225$$

$$g(x) = 17(x + 15)$$
a. $A = \frac{4913}{12}$
b. $A = \frac{5363}{6}$
c. $A = \frac{4913}{6}$
d. $A = \frac{6263}{6}$
e. $A = \frac{4913}{3}$

_____ 5. Find the area of the region bounded by the graphs of the algebraic functions.

$$f(x) = \sqrt[3]{x-8}$$

$$g(x) = x-8$$

a. $A = \frac{1}{2}$
b. $A = \frac{1}{17}$
c. $A = \frac{1}{24}$
d. $A = \frac{23}{24}$
e. $A = \frac{15}{16}$

6. Find the area of the region bounded by the graphs of the algebraic functions.

$$f(y) = y^{2} + 12, \quad g(y) = 0, \quad y = -12, \quad y = 1$$

a. $A = \frac{3097}{3}$
b. $A = \frac{2414}{3}$
c. $A = \frac{4825}{3}$
d. $A = \frac{3097}{6}$
e. $A = \frac{4828}{3}$

7. Find the area of the region bounded by the graphs of the function $f(x) = \frac{9x}{x^2 + 1}$, y = 0, $0 \le x \le 3$. Round your answer to three decimal places.

3

- a. 20.723b. 11.182
- c. 6.238
- d. 10.362
- e. 22.364

8. Find the area of the region bounded by the graphs of the function $f(x) = \sin 5x$,

 $g(x) = \cos 10x, \ \frac{-\pi}{10} \le x \le \frac{\pi}{30}$. Round your answer to three decimal places.

- a. 0.260
 b. 0.289
 c. 0.416
- d. 0.139
- e. 0.462

- 9. Find the area of the region bounded by the graphs of the equations.
 - $f(x) = \sin(x), g(x) = \cos(2x), \frac{-\pi}{2} \le x \le \frac{\pi}{6}.$
 - a. $A = \frac{9}{2}$ b. $A = \frac{9}{8}$ c. $A = \frac{3}{8}$ d. $A = \frac{3^{3/2}}{4}$ e. $A = \frac{3}{2}$
- 10. If the accumulation function F(x) is given by $F(x) = \int_{0}^{x} \left(\frac{1}{11}t^2 + 5\right) dt$, evaluate F(9).
 - a. $A = \frac{738}{11}$ b. $A = \frac{356}{33}$ c. $A = \frac{852}{11}$ d. $A = \frac{298}{11}$ e. $A = \frac{1068}{11}$
 - 11. Suppose that $R_1 = 6.81 + 0.86t$ and $R_2 = 6.81 + 0.35t$ model the revenue (in billions of dollars) for a large corporation. The model R_1 gives projected annual revenues from 2008 through 2015, with t = 8 corresponding to 2008, and R_2 gives projected revenues if there is a decrease in the rate of growth of corporate sales over the period. Approximate the total reduction in revenue if corporate sales are actually closer to the model R_2 . Round your answer to three decimal places.
 - a. \$3.570 billion
 - b. \$24.990 billion
 - c. \$19.763 billion
 - d. \$29.645 billion
 - e. \$12.495 billion

12. The surface of a machine part is the region between the graphs of $y_1 = |x|$ and $y_2 = 0.080x^2 + k$ as shown in the figure. Find k if the parabola is tangent to the graph of y_1 . Round your answer to three decimal places.

a. 3.125 b. 0.160

c. 0.080 d. 0.320

d. 0.320e. 6.250

ID: A

Name:

13. Concrete sections for the new building have the dimensions (in meters) and shape as shown in the figure (the picture is not necessarily drawn to scale). Find the area of the face of the section superimposed on the rectangular coordinate system. Round your answer to three decimal places.

- $25.031\ \text{m}^2$ a.
- 31.075 m^2 b.
- 29.151 m² c.
- 30.515 m^2 d.
- 28.031 m² e.

Name: _____

_____ 14. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y = 8 and $y = 16 - \frac{x^2}{16}$ about the x-axis.

a.
$$V = \pi \int_{-16}^{16} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{7168}{15} \sqrt{2} \pi$$

b.
$$V = \pi \int_{-8\sqrt{2}}^{8\sqrt{2}} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{14336}{15}\sqrt{2}\pi$$

c.
$$V = \pi \int_{-16}^{16} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{28672}{15} \sqrt{2} \pi$$

_

d.
$$V = \pi \int_{-8\sqrt{2}}^{8\sqrt{2}} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{28672}{15}\sqrt{2}\pi$$

e.
$$V = \pi \int_{-16}^{16} \left(\left(16 - \frac{x^2}{16} \right)^2 - 64 \right) dx = \frac{14336}{15} \sqrt{2} \pi$$

15. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by $y = x^8$ and y = 256 in the first quadrant about the y-axis.

a.
$$V = \pi \int_{0}^{8} y^{\frac{1}{8}} dy = \frac{4,096}{5} \pi$$

b. $V = \pi \int_{0}^{8} y^{\frac{1}{4}} dy = \frac{2,048}{5} \pi$
c. $V = \pi \int_{0}^{256} y^{\frac{1}{4}} dy = \frac{2,048}{5} \pi$
d. $V = \pi \int_{0}^{256} y^{\frac{1}{8}} dy = \frac{2,048}{5} \pi$

e.
$$V = \pi \int_{0}^{256} y^{\frac{1}{4}} dy = \frac{4,096}{5} \pi$$

____ 16. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by $y = x^{\frac{3}{4}}$, y = 1, and x = 0 about the y-axis.

a.
$$V = \pi \int_{0}^{1} y^{\frac{8}{3}} dy = \frac{3}{11} \pi$$

b. $V = \pi \int_{0}^{1} y^{\frac{8}{3}} dy = \frac{3}{22} \pi$
c. $V = \pi \int_{0}^{1} y^{\frac{4}{3}} dy = \frac{3}{11} \pi$
d. $V = \pi \int_{0}^{1} y^{\frac{3}{4}} dy = \frac{3}{22} \pi$
e. $V = \pi \int_{0}^{1} y^{\frac{3}{8}} dy = \frac{3}{11} \pi$

0

____ 17. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations $y = 2x^2$, y = 0, and x = 2 about the line x = 2.

a. $\frac{16}{3}\pi$ b. $\frac{8}{3}\pi$ c. $\frac{16}{3}$ d. $\frac{32}{3}$ e. $\frac{32}{3}\pi$

18. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given lines.

 $y = x^{2}, y = 8x - x^{2}$ (i) x-axis; (ii) the line y = 18a. $\frac{1,024}{3}\pi; \frac{1,280}{3}\pi$ b. $\frac{16}{3}\pi; \frac{1,280}{3}\pi$ c. $\frac{64}{3}\pi; \frac{128}{3}\pi$ d. $\frac{64}{3}\pi; \frac{1,280}{3}\pi$ e. $\frac{16}{3}\pi; \frac{128}{3}\pi$

19. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the given lines.

$$x = y^2, x = 8y - y^2$$

(i) y-axis; (ii) the line x = 18

a. $\frac{1,024}{3}\pi; \frac{1,280}{3}\pi$ b. $\frac{16}{3}\pi; \frac{128}{3}\pi$ c. $\frac{64}{3}\pi; \frac{128}{3}\pi$ d. $\frac{64}{3}\pi; \frac{1,280}{3}\pi$ e. $\frac{16}{3}\pi; \frac{1,280}{3}\pi$

- ____ 20. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y = 8.
 - y = x, y = 7, x = 0a. $\frac{245}{3}\pi$ b. $\frac{637}{6}\pi$ c. $\frac{637}{3}\pi$ d. $\frac{490}{3}\pi$
 - e. *π*
 - 21. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y = 2.
 - $y = \frac{1}{2}x^{2}, y = 2, x = 0$ a. $\frac{8}{15}\pi$ b. $\frac{32}{15}\pi$ c. $\frac{64}{15}\pi$ d. $\frac{4}{15}\pi$ e. $\frac{16}{15}\pi$

- 22. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line y = 14.
 - $y = \sin x, y = 0, 0 \le x \le \frac{\pi}{2}$ a. $\pi \left(14 - \frac{\pi}{2} \right)$ b. $\pi \left(14 - \frac{\pi}{4} \right)$ c. $\pi \left(56 - \frac{\pi}{4} \right)$ d. $\pi \left(28 - \frac{\pi}{2} \right)$ e. $\pi \left(28 - \frac{\pi}{4} \right)$
- 23. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the *x*-axis.
 - $y = \frac{1}{x}, y = 0, x = 8, x = 10$ a. $\frac{13}{80}\pi$ b. $\frac{9}{40}\pi$ c. $\frac{9}{80}\pi$ d. $\frac{1}{40}\pi$ e. $\frac{1}{80}\pi$

24. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the *x*-axis. Verify your results using the integration capabilities of a graphing utility.

 $\frac{\pi}{3}$

$$y = \sin(x), y = 0, x = 0, x =$$
a. $\frac{1}{3}\pi^2 - \frac{\sqrt{3}}{8}\pi$
b. $\frac{1}{6}\pi^2 + \frac{\sqrt{3}}{8}\pi$
c. $\frac{1}{6}\pi^2 - \frac{\sqrt{3}}{8}\pi$
d. $\frac{1}{3}\pi^2 + \frac{\sqrt{3}}{8}\pi$
e. $\frac{1}{6}\pi^2 - \frac{\sqrt{3}}{4}\pi$

25. A tank on the wing of a jet aircraft is formed by revolving the region bounded by the graph of $y = \frac{1}{15}x^2\sqrt{2-x}$ and the x-axis ($0 \le x \le 2$) about the x-axis, where x and y are measured in meters. Find the volume of the tank. Round your answer to two decimal places.

a. 0.45 m^3 b. 0.33 m^3 c. 0.03 m^3 d. 1.79 m^3 e. 0.12 m^3

Ch 7 MC Practice Answer Section

MULTIPLE CHOICE

1.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 7.1
	OBJ:	Write the defi	inite int	egrals nee	ded to calc	ulate the area	of a bou	unded region
	MSC:	Skill						
2.	ANS:	D	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	two curves	MSC:	Application
3.	ANS:	Е	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	two curves	MSC:	Application
4.	ANS:	С	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	two curves	MSC:	Application
5.	ANS:	А	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	two curves	MSC:	Application
6.	ANS:	С	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	several curves		
	MSC:	Application		C	2			
7.	ANS:	D	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	several curves		
	MSC:	Application	NOT:	Section 7.	.1			
8.	ANS:	A	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area of	a region b	ounded by	two curves	MSC:	Application
9.	ANS:	D	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the	area bet	tween two	curves		MSC:	Application
10.	ANS:	А	PTS:	1	DIF:	Easy	REF:	Section 7.1
	OBJ:	Evaluate the a	accumu	lation func	ction at a v	alue	MSC:	Skill
11.	ANS:	Е	PTS:	1	DIF:	Easy	REF:	Section 7.1
	OBJ:	Evaluate defin	nite inte	egrals in a	pplications		MSC:	Application
12.	ANS:	А	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate slop	pes of ta	angent line	es in applic	ations	MSC:	Application
13.	ANS:	E	PTS:	1	DIF:	Medium	REF:	Section 7.1
	OBJ:	Calculate the area of a region bounded by several curves in applications						
	MSC:	Application						
14.	ANS:	D	PTS:	1	DIF:	Medium	REF:	Section 7.2
	OBJ:	Calculate the	volume	using the	washer me	ethod of the sol	lid form	ned by revolving a region about the
	x-axis	MSC:	Applic	eation				
15.	ANS:	E	PTS:	1	DIF:	Medium	REF:	Section 7.2
	OBJ:	Calculate the	volume	using the	disk metho	od of the solid	formed	by revolving a region about the
	y-axis	MSC:	Applic	cation				
16.	ANS:	А	PTS:	1	DIF:	Medium	REF:	Section 7.2
	OBJ:	Calculate the	volume	using the	disk metho	od of the solid	formed	by revolving a region about the
	y-axis	MSC:	Applic	cation				
17.	ANS:	А	PTS:	1	DIF:	Difficult	REF:	Section 7.2
	OBJ:	Calculate the	volume	using the	disk metho	od of the solid	formed	by revolving a region about a
	vertica	ıl line	MSC:	Application	on			

- 18. ANS: A PTS: 1 DIF: Medium REF: Section 7.2
 OBJ: Calculate the volume using the washer method of the solid formed by revolving a region about a horizontal line MSC: Application
- 19. ANS: A
 PTS: 1
 DIF: Medium
 REF: Section 7.2

 OBJ: Calculate the volume using the washer method of the solid formed by revolving a region about a vertical line
 MSC: Application
- 20. ANS: D
 PTS: 1
 DIF: Medium
 REF: Section 7.2

 OBJ: Calculate the volume using the washer method of the solid formed by revolving a region about a horizontal line
 MSC: Application
- 21. ANS: C
 PTS: 1
 DIF: Medium
 REF: Section 7.2

 OBJ: Calculate the volume using the disk method of the solid formed by revolving a region about a horizontal line
 MSC: Application
- 22. ANS: E
 PTS: 1
 DIF: Medium
 REF: Section 7.2

 OBJ: Calculate the volume using the washer method of the solid formed by revolving a region about a horizontal line
 MSC: Application
- 23. ANS: D PTS: 1 DIF: Medium REF: Section 7.2 OBJ: Calculate the volume using the disk method of the solid formed by revolving a region about the x-axis MSC: Application
- 24. ANS: C
 PTS: 1
 DIF: Medium
 REF: Section 7.2

 OBJ:
 Calculate the volume using the disk method of the solid formed by revolving a region about the x-axis MSC:
 Application
- 25. ANS: C PTS: 1 DIF: Medium REF: Section 7.2 OBJ: Calculate the volume using the disk method of the solid formed by revolving a region about the x-axis MSC: Application